3,804 research outputs found

    Targeting of proteins to the twin-arginine translocation pathway

    Get PDF
    The twin-arginine protein transport (Tat pathway) is found in prokaryotes and plant organelles and transports folded proteins across membranes. Targeting of substrates to the Tat system is mediated by the presence of an N-terminal signal sequence containing a highly conserved twin-arginine motif. The Tat machinery comprises membrane proteins from the TatA and TatC families. Assembly of the Tat translocon is dynamic and is triggered by the interaction of a Tat substrate with the Tat receptor complex. This review will summarise recent advances in our understanding of Tat transport, focusing in particular on the roles played by Tat signal peptides in protein targeting and translocation. [Abstract copyright: © 2020 John Wiley & Sons Ltd.

    Adaptive Density Estimation on the Circle by Nearly-Tight Frames

    Full text link
    This work is concerned with the study of asymptotic properties of nonparametric density estimates in the framework of circular data. The estimation procedure here applied is based on wavelet thresholding methods: the wavelets used are the so-called Mexican needlets, which describe a nearly-tight frame on the circle. We study the asymptotic behaviour of the L2L^{2}-risk function for these estimates, in particular its adaptivity, proving that its rate of convergence is nearly optimal.Comment: 30 pages, 3 figure

    Orbital mechanism of the circular photogalvanic effect in quantum wells

    Full text link
    It is shown that the free-carrier (Drude) absorption of circularly polarized radiation in quantum well structures leads to an electric current flow. The photocurrent reverses its direction upon switching the light helicity. A pure orbital mechanism of such a circular photogalvanic effect is proposed that is based on interference of different pathways contributing to the light absorption. Calculation shows that the magnitude of the helicity dependent photocurrent in nn-doped quantum well structures corresponds to recent experimental observations.Comment: 5 pages, 2 figures, to be published in JETP Letter

    Phase-Coherent Transport through a Mesoscopic System: A New Probe of Non-Fermi-Liquid Behavior

    Full text link
    A novel chiral interferometer is proposed that allows for a direct measurement of the phase of the transmission coefficient for transport through a variety of mesoscopic structures in a strong magnetic field. The effects of electron-electron interaction on this phase is investigated with the use of finite-size bosonization techniques combined with perturbation theory resummation. New non-Fermi-liquid phenomena are predicted in the FQHE regime that may be used to distinguish experimentally between Luttinger and Fermi liquids.Comment: 4 pages, 3 figures, Revte

    Weak antilocalization in a 2D electron gas with the chiral splitting of the spectrum

    Full text link
    Motivated by the recent observation of the metal-insulator transition in Si-MOSFETs we consider the quantum interference correction to the conductivity in the presence of the Rashba spin splitting. For a small splitting, a crossover from the localizing to antilocalizing regime is obtained. The symplectic correction is revealed in the limit of a large separation between the chiral branches. The relevance of the chiral splitting for the 2D electron gas in Si-MOSFETs is discussed.Comment: 7 pages, REVTeX. Mistake corrected; in the limit of a large chiral splitting the correction to the conductivity does not vanish but approaches the symplectic valu

    Infrared catastrophe and tunneling into strongly correlated electron systems: Exact solution of the x-ray edge limit for the 1D electron gas and 2D Hall fluid

    Full text link
    In previous work we have proposed that the non-Fermi-liquid spectral properties in a variety of low-dimensional and strongly correlated electron systems are caused by the infrared catastrophe, and we used an exact functional integral representation for the interacting Green's function to map the tunneling problem onto the x-ray edge problem, plus corrections. The corrections are caused by the recoil of the tunneling particle, and, in systems where the method is applicable, are not expected to change the qualitative form of the tunneling density of states (DOS). Qualitatively correct results were obtained for the DOS of the 1D electron gas and 2D Hall fluid when the corrections to the x-ray edge limit were neglected and when the corresponding Nozieres-De Dominicis integral equations were solved by resummation of a divergent perturbation series. Here we reexamine the x-ray edge limit for these two models by solving these integral equations exactly, finding the expected modifications of the DOS exponent in the 1D case but finding no changes in the DOS of the 2D Hall fluid with short-range interaction. We also provide, for the first time, an exact solution of the Nozieres-De Dominicis equation for the 2D electron gas in the lowest Landau level.Comment: 6 pages, Revte

    Quantum interference and electron-electron interactions at strong spin-orbit coupling in disordered systems

    Full text link
    Transport and thermodynamic properties of disordered conductors are considerably modified when the angle through which the electron spin precesses due to spin-orbit interaction (SOI) during the mean free time becomes significant. Cooperon and Diffusion equations are solved for the entire range of strength of SOI. The implications of SOI for the electron-electron interaction and interference effects in various experimental settings are discussed.Comment: 4 pages, REVTEX, 1 eps.figure Submitted to Phys. Rev. Let

    Robust concurrent remote entanglement between two superconducting qubits

    Full text link
    Entangling two remote quantum systems which never interact directly is an essential primitive in quantum information science and forms the basis for the modular architecture of quantum computing. When protocols to generate these remote entangled pairs rely on using traveling single photon states as carriers of quantum information, they can be made robust to photon losses, unlike schemes that rely on continuous variable states. However, efficiently detecting single photons is challenging in the domain of superconducting quantum circuits because of the low energy of microwave quanta. Here, we report the realization of a robust form of concurrent remote entanglement based on a novel microwave photon detector implemented in the superconducting circuit quantum electrodynamics (cQED) platform of quantum information. Remote entangled pairs with a fidelity of 0.57±0.010.57\pm0.01 are generated at 200200 Hz. Our experiment opens the way for the implementation of the modular architecture of quantum computation with superconducting qubits.Comment: Main paper: 7 pages, 4 figures; Appendices: 14 pages, 9 figure

    Stratospheric General Circulation with Chemistry Model (SGCCM)

    Get PDF
    In the past two years constituent transport and chemistry experiments have been performed using both simple single constituent models and more complex reservoir species models. Winds for these experiments have been taken from the data assimilation effort, Stratospheric Data Analysis System (STRATAN)
    • …
    corecore